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Agenda

• Motivation

• Depot location

• Path planning

• Remote diagnosis

• Autonomous landing

• Future work
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What do we travel for?

To or From Work

Shopping and 

ErrandsSchool/Church

Social and 

Recreational

Other

Purpose of Personal Travel
(Source: 2017 National Household Travel Survey)

38%

17%

11%

28%

6%

Problem: Most % of personal trips are for “fetching stuff”, cost time, energy & health. 

• Short, boring, dreadful trips

• Creating excessive congestion, pollution, accidents, stress and wastes of time

Source: JPMorgan Chase Institute, 2016



Autonomy is the way to go in package delivery

• 21.2 billion packages were shipped 

in the U.S. in 2022

• From 2017 to 2022, the number of 

packages the average American 

received in a year increased by 73%
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Package Delivery Statistics (2024): per Day, Month & Year (capitaloneshopping.com)

“Finding enough labor for the logistics industry could become extremely difficult or even impossible.”  

-- DHL 

“Get ready for a world where autonomous vehicles deliver 80 percent of parcels.”  -- McKinsey&Co 

https://capitaloneshopping.com/research/package-delivery-statistics/


Drone delivery is 
booming
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Amazon

DHL Zipline UPS

Uber

Antworks

Wing Walmart

China’s Low-Altitude Economy initiative



Drones

Ground 
support

Airspace
Network planning

Onboard Intelligence

Traffic management

Path planning

Detect and Avoid



Where to place the vertiports / depots?
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There are 𝑛 demand centers in a city

Decide the location of 𝑝 depots

Order is fulfilled by the nearest depot

Drone returns to the same depot

so that the longest round-trip distance is minimized.

Minimize the upper bound of battery 

consumption of a trip. 
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𝐿1

𝐿2

𝐿1

𝐿2

𝐿1

𝐿2

Given a trip length budget 𝐿, with 𝐿1 + 𝐿2, the sum of the delivery and return trips, ≤ 𝐿

Customers that are reachable by a pair of depots must lie in the elliptical area determined by the 

depots as focus points and 𝐿 as the major axis length.  

𝑳
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The problem becomes determining 

the location of 𝑝 depots so that

▪ Each customer is covered by an 

ellipsis

▪ Each ellipsis’s foci are depots

▪ The size* of the largest ellipsis is 

minimized. 

* Size means major axis length.
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Problem Formulation

Given 𝑛 demand points with coordinates (𝑎𝑖 , 𝑏𝑖), 𝑖 = 1, … , 𝑛, on a plane, find 𝑝 depot 

locations 𝑋𝑗, 𝑗 = 1, … , 𝑝, in order to minimize

max
1≤𝑖≤𝑛

min
1≤𝑗≤𝑗′≤𝑝

𝐷𝑖 𝑋𝑗 + 𝐷𝑖(𝑋𝑗′)

where 𝑋𝑗 ≔ (𝑥𝑗 , 𝑦𝑗) is the location of depot 𝑗, for 𝑗 = 1, … , 𝑝, and 𝐷𝑖 𝑋𝑗 ≔

𝑥𝑗 − 𝑎𝑖
2

+ 𝑦𝑗 − 𝑏𝑖
2
 is the Euclidean distance between demand point 𝑖 and depot 𝑗. 

We call this problem Euclidean 𝒑-Elliptical Cover  problem.

Minimize 𝐿

Subject to 𝐿 ≥ σ𝑗=1
𝑝

𝑧𝑖𝑗 𝑥𝑗 − 𝑎𝑖
2

+ 𝑦𝑗 − 𝑏𝑖
2

1

2
, for 𝑖 = 1, … , 𝑛

  σ𝑗=1
𝑝

𝑧𝑖𝑗 = 𝑘,    for 𝑖 = 1, … , 𝑛

  𝑧𝑖𝑗 ∈ 0, 1 ,    for 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑝

  𝑥𝑗 , 𝑦𝑗 ∈ 𝑅    for 𝑗 = 1, … , 𝑝

Mixed Integer Nonlinear Programming (MINLP) formulation (𝑘 = 2):
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General MINLP formulation:

Minimize 𝐿

Subject to 𝐿 ≥ σ𝑗=1
𝑝

𝑧𝑖𝑗 𝑥𝑗 − 𝑎𝑖
2

+ 𝑦𝑗 − 𝑏𝑖
2

1

2
, for 𝑖 = 1, … , 𝑛

  σ𝑗=1
𝑝

𝑧𝑖𝑗 = 𝑘,    for 𝑖 = 1, … , 𝑛

  𝑧𝑖𝑗 ∈ 0, 1 ,    for 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑝

  𝑥𝑗 , 𝑦𝑗 ∈ 𝑅    for 𝑗 = 1, … , 𝑝

When 𝑘 = 1, it is the Euclidean 𝑝-center problem. Proven NP-hard. [Megiddo and Supowit, 1984]

When 𝑘 = 𝑝, the problem is convex and solvable in polynomial time. See [Blanco and Puerto, 2021].

When 𝑘 = 2, it is the Euclidean 𝑝-Elliptical Cover problem. Proven NP-hard, heuristic solution [Liu, 2023].

If the demand-depot assignment 𝑧𝑖𝑗 is fixed, then the problem is convex, i.e., a second-order 

cone problem (SOCP), solvable in polynomial time. 
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• 𝑛 = 10 demand points

• 𝑝 = 4 depots

• There are 
4
2

10

= 60,466,176 different demand-depot assignments

• Since the depots are unlabeled, the number of unique assignments is 162,575 

• Difficulties:

• Algebraic formulation intrinsically labels objects via indexing, hard to deduplicate

• The number of unique assignments is still too big to check one by one

Assignment is the difficult part
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A locate-allocate algorithm

Step 1: Initialize 𝐿∗ = ∞ and randomly sample 𝑝 depot locations on the plane, 𝑋1, … , 𝑋𝑝

Step 2 (Allocate): For each demand point 𝑖, compute the distances 𝐷𝑖 𝑋𝑗 , 𝑗 = 1, … , 𝑝, and let 

𝐽 𝑖 ≔ {𝑗𝑖 , 𝑗𝑖
′} where 𝑗𝑖 = arg min{1,…,𝑝} 𝐷𝑖 𝑋𝑗  and 𝑗𝑖

′ = arg min 1,…,𝑝 \{𝑗𝑖} 𝐷𝑖(𝑋𝑗). 

Step 3 (Locate): Solve the SOCP problem:

 Minimize 𝐿

 Subject to 𝐿 ≥ σ𝑗∈𝐽(𝑖) 𝑥𝑗 − 𝑎𝑖
2

+ 𝑦𝑗 − 𝑏𝑖
2

1

2
, for 𝑖 = 1, … , 𝑛

   𝑥𝑗 , 𝑦𝑗 ∈ 𝑅    for 𝑗 = 1, … , 𝑝

to obtain the optimal value 𝐿, and the optimal solution 𝑋𝑗, 𝑗 = 1, … , 𝑝.

Step 4: If 𝐿 − 𝐿∗ ≥ −𝜖 (insufficient decrease), stop and return { 𝑋1, … , 𝑋𝑝} as solution; otherwise, 

update 𝐿∗ ← 𝐿, {𝑋1, … , 𝑋𝑝} ← { 𝑋1, … , 𝑋𝑝}, go to Step 2. 

Will terminate in finite (usually few) iterations.
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Demo (n=10, p=4)

Demo (n=30, p=4)

Where to place the four depots?

Demonstration

Cover 100 points Cover the whole area

Paper: Y. Liu (2023). An elliptical cover problem in 

drone delivery network design and its solution 

algorithms, European Journal of Operational Research, 

vol 304, issue 3, 2023. 

Code: GitHub - profyliu/elliptical_cover

file:///C:/Users/yliu/OneDrive - Wayne State University/WSU/Conferences/2024 OSU trip/ellipses_demo_n10_p4_s20.pdf
file:///C:/Users/yliu/OneDrive - Wayne State University/WSU/Conferences/2024 OSU trip/ellipses_demo_n30_p4_s30.pdf
https://github.com/profyliu/elliptical_cover
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J. Zhao, B. Xie and L. Yu. (2024). An ellipse-based locating method for flexible deployment of emergency UAVs, 

Socio-Economic Planning Sciences.

Application in planning for Low-altitude Economy in Shenzhen, China 



How to route the air fleet?

When there are other, non-cooperative UAVs traversing the same airspace
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USS1 USS 2
USS 
Local

Network

USS 1’s view USS 2’s view
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Decision Variables:

𝑢𝑖,𝑡 location of vehicle 𝑖 at time 𝑡

𝑣𝑖 velocity vector of vehicle 𝑖 
𝑤𝑖,𝑗,𝑡 loss of separation between vehicles 𝑖 and 𝑗 at time 𝑡

Parameters:

𝑉𝑖 maximum speed of vehicle 𝑖
𝐷𝑖 destination coordinate of vehicle 𝑖
𝑆𝑖,𝑗 intra-fleet separation between 𝑖, 𝑗 ∈ 𝑂

𝑆𝑖,𝑗
′  inter-fleet separation between 𝑖 ∈ 𝑂 and 𝑗 ∈ 𝐸

𝛼𝑖, 𝛽 priorities of vehicle 𝑖 and a penalty factor

ො𝑢𝑖,𝑡 expected location of external vehicle 𝑖 at time 𝑡

Agent’s Semi-Cooperative Path Planning Model

Minimize σ𝑖∈𝑂 𝛼𝑖 ⋅ σ𝑡∈𝑇 𝑢𝑖,𝑡 − 𝐷𝑖 + 𝛽 ⋅ σ𝑖∈𝑂,𝑗∈𝐸 σ𝑡∈𝑇 𝑤𝑖,𝑗,𝑡
2

Subject to 𝑢𝑖,𝑡 = 𝑢𝑖,𝑡−1 + 𝑉𝑖𝑣𝑖 ,  ∀𝑖 ∈ 𝑂, 𝑡 ∈ 𝑇

 𝑣𝑖 ≤ 1,    ∀𝑖 ∈ 𝑂, 𝑡 ∈ 𝑇

 𝑢𝑖,𝑡 − 𝑢𝑗,𝑡′ ≥ 𝑆𝑖,𝑗 ,  ∀𝑖, 𝑗 ∈ 𝑂, 𝑡, 𝑡′ ∈ 𝑇

 𝑢𝑖,𝑡 − ො𝑢𝑗,𝑡 + 𝑤𝑖,𝑗,𝑡 ≥ 𝑆𝑖,𝑗
′ ,  ∀𝑖 ∈ 𝑂, 𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇

  𝑤𝑖,𝑗,𝑡 ≥ 0,   ∀𝑖 ∈ 𝑂, 𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇

Separation and deadlock 

resolution can be achieved 

via setting / adjusting the 

parameters



• 3 vehicles 1 agent

• 20 vehicles 1 agent

• 20 vehicles 20 agents

• 30 vehicles 2 agents
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Simulation

Y. Liu (2021). A Multi-agent Semi-cooperative Unmanned Air Traffic Management Model with Separation Assurance, EURO Journal on 
Transportation and Logistics, vol 10, 2021.

Y. Liu (2019). A Progressive Motion Planning Algorithm and Traffic Flow Analysis for High-Density 2D Traffic, Transportation Science, 

vol 53, no 6, 2019.

https://waynestateprod-my.sharepoint.com/personal/gn0061_wayne_edu/Documents/WSU/Conferences/2024 OSU trip/3v1a.pdf
https://waynestateprod-my.sharepoint.com/personal/gn0061_wayne_edu/Documents/WSU/Conferences/2024 OSU trip/a_circular_20.pdf
https://waynestateprod-my.sharepoint.com/personal/gn0061_wayne_edu/Documents/WSU/Conferences/2024 OSU trip/a_circular_20_a20.pdf
https://waynestateprod-my.sharepoint.com/personal/gn0061_wayne_edu/Documents/WSU/Conferences/2024 OSU trip/a_30v_2a.pdf


21 S. Kazemdehbashi and Y. Liu (2024). An algorithm with exact bounds for coverage path planning in UAV-based 
search and rescue under windy conditions, Computers and Operations Research, Volume 173.

Search an area with 𝑛 UAVs 

in minimal time under windy 

conditions

Sina demonstrating the work to visitors 

from Wuhan Univ. of Technology



The Drones
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Component wiring of the quadcopter platform used in this research



24

Quadcopter with ArduPilot autopilot system

Simulated drones running with 

ArduPilot SITL (Software in the Loop)



Multiple command and control data links
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UI

LTE

A system architecture for drone delivery services 

Z. Zhou and Y. Liu (2022). A scalable cloud-based UAV fleet management 

system, Proceedings of FAIM 2022

Y. Liu (2019). An Optimization-driven Dynamic Vehicle Routing Algorithm 

for On-demand Meal Delivery Using Drones, Computers and Operations 
Research, vol 111, 2019
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Components can wear and tear after a flight 
mission

28

1. Is the drone overloaded with heavy payload?

2. Is the center of gravity aligned with the geometric 

center of the air frame? 

3. Are all motors able to spin as directed by the flight 

controller?

4. Are all propellers intact and able to generate the 

expected thrust? 

5. Does the flight compass need re-calibration?

Preflight check is essential to ensure safety

Can we perform these checks remotely?
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Construction of the landing platform for proof of concept



30

Land still, read load cell measurements 𝑤𝑗, 𝑗 = 1, … , 4. 

Calculate: 

1. Total weight 𝑊 = σ𝑗 𝑤𝑗

2. Center of gravity (projected on the platform plane)

Run a propeller motor, to create a new force 𝐹 acting on the 

rigid body at the propeller center (𝑥, 𝑦). 

The change in weight will be sensed by the load cells, 

recorded as Δ𝑤𝑗, 𝑗 = 1, … , 4. 

Calculate 𝐹 and (𝑥, 𝑦) by equilibrium condition:

1. 𝐹 = σ𝑗 Δ𝑤𝑗

2. (𝑥, 𝑦) =
1

𝐹
σ𝑗 Δ𝑤𝑗𝑥𝑗

𝑆 ,
1

𝐹
σ𝑗 Δ𝑤𝑗𝑦𝑗

𝑆 , where (𝑥𝑗
𝑆, 𝑦𝑗

𝑆) is the 

location coordinate of load cell 𝑗.

If 𝐹 is smaller than the expected thrust, the propeller or 

motor is damaged. 

Measurement Procedure
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Record many samples of the force locations (𝑥, 𝑦) for each propeller pair.

(𝑥𝑖,𝑠,𝑘 , 𝑦𝑖,𝑠,𝑘) is the 𝑠-th sample for propeller 𝑘 in the 𝑖-th pair, 𝑘 ∈ {𝐴, 𝐵}, define sgn 𝐴 ≔ 1, sgn 𝐵 ≔ −1

𝐿𝑖, 𝛼𝑖 are the arm length and angle of propeller pair 𝑖, which are known by the airframe design

Infer the geometric center ( ො𝑥, ො𝑦) and airframe orientation 𝜃 by solving the nonlinear least squares:

Minimize ො𝑥, ො𝑦,−𝜋<𝜃≤𝜋 

𝑖



𝑠



𝑘

ො𝑥 + sgn 𝑘 𝐿𝑖 cos 𝛼𝑖 + 𝜃 − 𝑥𝑖,𝑠,𝑘
2

+ ො𝑦 + sgn 𝑘 𝐿𝑖 sin 𝛼𝑖 + 𝜃 − 𝑦𝑖,𝑠,𝑘
2

AA

B B

Inference by nonlinear regression

Z. Zhou and Y. Liu* (2021). A smart landing platform with data-driven analytic procedures for UAV preflight safety diagnosis, IEEE Access
US. Patent 63/249,752 (pending)
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Where should a drone land in 
emergency?



Parking spaces are ubiquitous in cities 

Surface Coverage (Arnold and Gibbons, 1996)

Surface parking landcover processed from 

multispectral imagery in Seattle (Eric 

Scharnhorst, 2018)
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Train & validate an AI agent 
in a simulated environment

Deploy & test in a real drone



The agent’s model
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RGB

Image

32

Size Value range

Body Tilt 1 [0, 2]

Altitude 1 [1.5, 12] 

Velocity [x, y, z] 3 [−∞, +∞]

8x8 

4

64

4x4 

2

64

3x3 

1
227x227x3

5

256

36864

256
37120

512 512

…

…

3

𝜇

1

Linear + ELU

Conv2D + RELU

Linear + ELU

Linear

Concat

Linear

3

ln 𝜎
Linear

Value 𝑉(𝑠𝑡; 𝜃)

Action 𝑎𝑡 ~ Normal(𝜇, 𝜎)

State: 𝑠𝑡

Parameter 𝜃

Policy 𝜋(𝑎𝑡|𝑠𝑡; 𝜃)

Environment

Reward 𝑟𝑡



Advantage Actor-Critic (A2C) model

Return 𝑅𝑡: = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ , the total discounted reward 
starting from time step 𝑡

Value 𝑉(𝑠𝑡; 𝜃): the expected return starting from state 𝑠𝑡, by following 
a policy parameterized by 𝜃

The critic’s network predicts the value of 𝑉(𝑠𝑡; 𝜃), denoted as 𝑉(𝑠𝑡; 𝜃) 

𝑅𝑡 ≔ 𝑟𝑡 + 𝛾𝑟𝑡+1 + ⋯ + 𝛾𝑇−1𝑟𝑡+𝑇−1 + 𝛾𝑇 𝑉(𝑠𝑇; 𝜃) is the return obtained 
by taking actions (𝑎𝑡, 𝑎𝑡+1, … , 𝑎𝑡+𝑇−1) in the next 𝑇 − 1 steps, then 
trusting the critic’s predicted value for future steps. 

𝐴𝑡 ≔ 𝑅𝑡 − 𝑉(𝑠𝑡; 𝜃) is the Advantage of taking actions over trusting the 
critic’s prediction all along

37

Actor’s network learns 

the policy 𝜋 𝑎𝑡 𝑠𝑡; 𝜃 , the 

probability distribution of 

𝑎𝑡 conditioning on 𝑠𝑡

Critic’s network learns 

the value 𝑉(𝑠𝑡; 𝜃), the 

expected return starting 

from 𝑠𝑡



Loss function in model training
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Actor’s goal:

To increase the probability of choosing 𝑎𝑡 when 𝐴𝑡 > 0, and vice versa.

Policy Gradient (PG) method [1]:

Maximize𝜃 log 𝜋 𝑎𝑡 𝑠𝑡; 𝜃 ⋅ 𝐴𝑡

Proximal Policy Optimization (PPO) method [2]:

Maximize𝜃 CLIP(𝜙𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) ⋅ 𝐴𝑡, where 𝜙𝑡 𝜃 ≔
𝜋(𝑎𝑡|𝑠𝑡;𝜃)

𝜋(𝑎𝑡|𝑠𝑡;𝜃old)

Critic’s goal:

To increase prediction accuracy, 

Minimize𝜃 𝑉 𝑠𝑡; 𝜃 − 𝑉 𝑠𝑡; 𝜃old − 𝐴𝑡
2

[1] Mnih et al. (2016) Asynchronous Methods for Deep Reinforcement Learning

[2] Shulman et al. (2017) Proximal Policy Optimization Algorithms



Loss function in model training

To ensure sufficient exploration, the action distribution should not converge too 

quickly to a (suboptimal) deterministic policy.

Two measures were taken:

1. Use ‘softplus’ activation function 𝑦 = ln(1 + 𝑒𝑥) on the model output logstd (i.e., 

log 𝜎), so 𝜎 is always above 1. 

2. Add a term to maximize the entropy [3] of the action distribution in the loss 

function, which exerts an upward push to 𝜎.

39

To bound the magnitude of 𝜇 (the mean of action), minimize

b_loss: = 𝜇 − 1.1 + 2 + 𝜇 + 1.1 − 2

[3] Williams and Peng (1991), Function optimization using connectionist reinforcement learning algorithms. 



Model training

The overall loss function used in PPO: 

Loss = −CLIP(𝜙𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) ⋅ 𝐴𝑡 + 𝑉 𝑠𝑡; 𝜃 − 𝑉 𝑠𝑡; 𝜃old − 𝐴𝑡
2 − 0.01 ⋅ entropy 

+  0.0001 ⋅ b_loss

40

In each training epoch:

For actor = 1, …, N do

Run policy 𝜋old in environment for T timesteps

Compute advantages 𝐴𝑡, … , 𝐴𝑡+𝑇

Minimize Loss wrt 𝜃, for K mini-epochs with minibatch size M

𝜃old ← 𝜃



NVIDIA Omniverse and Isaac Sim

41



Isaac Gym

Relevant programs in Isaac Gym, such as the 

Quadcopter and Crazyflie tasks, have some limitations:

1. Actions to be learned are low-level control targets, 

such as forces and thrusts with high-frequency 

updates, i.e., dt = 0.01 s

2. Observations are uni-modal, i.e., IMU inputs

3. Not suited for complex task configurations, e.g., 

hierarchical decisions, task switching, etc. 

42

GPU-accelerated vectorized RL training environments featuring physics-based simulation, 

photo-realistic rendering, domain randomization and sim-to-real support (e.g., via ROS).

https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs


The Drone

43

A digital model of the 3DR’s Iris quadrotor, with a downward-

facing camera on a stabilized gimbal. 



The flight controller

44

I implemented a tensorized version of the nonlinear controller presented in Daniel Mellinger and Vijay Kumar, Minimum snap 
trajectory generation and control for quadrotors, 2011, so that many drones can be controlled in parallel efficiently via GPU. 

The RL model decides where 

to go, i.e., target coordinate [x, 

y, z] in body frame, for the next 

few physical steps. 

The physical execution, i.e., 

the thrusts and torque 

generated by the propellers, 

is handled by the FC. 



The landing scene

45

Obstacles: a cone 

and a rolling ball

Target: six available 

parking spaces



Reward Function

Reward 𝒓𝒕 = Target + Up + Altitude – 3 + Done*(OnTarget – Obstacle)

46

Target = 1 / (1 + DNT)

Up = 1 / (1 + 10*Tilt)

Altitude = 1 / (1 + |BodyPosZ – 1.5|)

Done = 300 if BodyPosZ < 1.5; 0 otherwise

OnTarget = -4*DNT^2 + 1 if DNT < 0.5; 0 otherwise

Obstacle = exp(-2*DNO)

An episode ends if Tilt > 0.5 or BodyPosZ < 1.5 or BodyPosZ > 30 or Step Count > 400 

Target

Obstacle

DNT = Horizontal Distance to Nearest Target

DNO = Horizontal Distance to Nearest Obstacle



Simpler scene test result

Single target, no obstacle

The trained model works 

well. 

47
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Multiple targets, multiple obstacles

In training: N=16, T=64, M=256, K=8. Adam Optimizer with adaptive learning rate starting at 

0.001 was used. 

Trained for 576 epochs, ~4.5 hr



Future Work

• Nonlinear optimization algorithms

• Sim-to-Real transfer of AI models

• Search and rescue, public safety, 

agriculture applications

54



Thank
you

Yanchao Liu

yanchaoliu@wayne.edu
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