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What do we travel for?

Detroit 25t Median 75
Percentile Percentile

3.8 miles

Purpose of Personal Travel

(Source: 2017 National Household Travel Survey)

Clothing

Other To or From Work
Entertainment 313_"1"_95 ________
Social and 5.4 miles
Recreational Restaurants mies ____ ______.
Nondurables 122 g‘llle_s _______
Fuel 116_"1"_e§ _________
Shopping and Grocery Stores 1.4 miles
School/Church Errands

0.9 miles

T Pharmacies

Source: JPMorgan Chase Institute, 2016

Problem: Most % of personal trips are for “fetching stuff”’, cost time, energy & health.
« Short, boring, dreadful trips
« Creating excessive congestion, pollution, accidents, stress and wastes of time



Autonomy is the way to go in package delivery

Global Shipping & Delivery Market Revenue * _21 .2 billion _packages were Shlpped
(in billions) in the U.S. in 2022
$1,074 S1149

$1230 &  From 2017 to 2022, the number of
$998  $1024 packages the average American
i I I I received in a year increased by 73%
$535 I

2018 2019 2020 2021 2022 2023* 2024* 2025* 2026* 2027* 2028*

- Based on Pitney Bov 55 3 al markets repr 7  the global populat

“Finding enough labor for the logistics industry could become extremely difficult or even impossible.”
- DHL

"Get ready for a world where autonomous vehicles deliver 80 percent of parcels.” - McKinsey&Co

Package Delivery Statistics (2024): per Day, Month & Year (capitaloneshopping.com)



https://capitaloneshopping.com/research/package-delivery-statistics/

Drone delivery is
booming

Amazon Uber Wing Walmart
DHL Zipline UPS Antworks

China’s Low-Altitude Economy initiative

China’s Futuristic Industries: Investment Prospects in the
Emerging Low-Altitude Economy

24,2024 Posted by China Briefing tten by Yi Wu and Giulia Interesse  Recding Time minutes

China’s low-altitude economy is rapidly growing, driven by supportive policies and technological advancements, with projections
indicating a significant economic contribution by 2025. Key regions like Guangdong, Shenzhen, and Chengdu are spearheading
development through substantial investments and regulatory support, despite challenges in infrastructure and safety. We examine the
investment opportunities and business outlook of this burgeoning sector

During the annual Central Economic Work Conference, which concluded on December 18, 2023, Chinese policymakers outlined
priorities for 2024 economic work. The meeting identified the low-altitude economy as a strategic emerging sector, alongside key

industries such as bio-manufacturing and commercial aerospace innovation.

The term “low-altitude economy” refers to a spectrum of economic activities accurring within low altitude airspace, defined as the
space 1,000 meters above ground. This includes various activities and industries centered around civil-manned and unmanned aerial

vehicles, such as passenger transport, cargo delivery, manufacturing, low-altitude flight operations, and integrated services.
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Where to place the vertiports / depots?




Order is fulfilled by the nearest depot

i)
w/\
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Drone returns to the same depot

Q & &

There are n demand centers in a city

I )

Decide the location of p depots so that the longest round-trip distance is minimized.

% . . .
X Minimize the upper bound of battery
consumption of a trip.

e [y
& «.
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Given a trip length budget L, with L, + L,, the sum of the delivery and return trips, < L

Customers that are reachable by a pair of depots must lie in the elliptical area determined by the
depots as focus points and L as the major axis length.



The problem becomes determining
the location of p depots so that

= Each customer is covered by an
ellipsis

= FEach ellipsis’s foci are depots

» The size" of the largest ellipsis is
minimized.

* Size means major axis length.
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Problem Formulation

Given n demand points with coordinates (a;, b;), i = 1, ...,n, on a plane, find p depot
locations X;, j = 1, ..., p, in order to minimize
max {Kg.r;ljr,lsp{l?i (X;) + D; <Xj')}}

where X; = (x;,y;) is the location of depot j, for j = 1, ...,p, and D;(X;) =

\/(xj —a;)" + (y; — b;)" is the Euclidean distance between demand point i and depot j.

We call this problem Euclidean p-Elljptical Cover problem.

Mixed Integer Nonlinear Programming (MINLP) formulation (k = 2):

Minimize L
1
SUbjeCt 1o L > Z?=1Zij l(x] — Cli)z + (_'y] — bl’)zlz, fori = 1,..,n
59=1Zl]=k, fori=1,...,7’l
Zij € {0, 1}, fori = 1,..,n, ] =1,..

Xj,¥j €R forj=1,..,p

b




General MINLP formulation:

Minimize L
1
SUbjeCt 1o L > Z?=1Zij l(x] — al-)z S5 (y] — bi)zlz, fori = 1,..,n
1% _ .
i=1Zij = k. fori=1,..,n
ZijE{O,l}, fori=1,...,n,j=1,...,p
xj,yj €R forj=1,..,p

When k = 1, it is the Euclidean p-center problem. Proven NP-hard. [Megiddo and Supowit, 1984]
When k = p, the problem is convex and solvable in polynomial time. See [Blanco and Puerto, 2021].
When k = 2, it is the Euclidean p-Elliptical Cover problem. Proven NP-hard, heuristic solution [Liu, 2023].

If the demand-depot assignment z;; is fixed, then the problem is convex, i.e., a second-order
cone problem (SOCP), solvable in polynomial time.
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Assignment is the difficult part

n = 10 demand points —

p = 4 depots
4710 _ .
There are (2) = 60,466,176 different demand-depot assignments

Since the depots are unlabeled, the number of unique assignments is 162,575

Difficulties:
« Algebraic formulation intrinsically labels objects via indexing, hard to deduplicate
* The number of unique assignments is still too big to check one by one
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A locate-allocate algorithm  will terminate in finite (usually few) iterations.

Step 1: Initialize L* = oo and randomly sample p depot locations on the plane, X, ..., X,

Step 2 (Allocate): For each demand point i, compute the distances D;(X;),j = 1, ...,p, and let
J(@) = {j;,j{} where j; = argming; _,; D;(X;) and j{ = argming ¢4 Di (X))

Step 3 (Locate): Solve the SOCP problem:

Minimize L
1
. 2 212 :
Subject to L=XYiewm [(x] —a;) + (yj — b;) ]2, fori=1,..,n
Xj,Yj €R forj=1,..,p

to obtain the optimal value L, and the optimal solution )?j,j =1,..,p.

Step 4: If L — L* = —e (insufficient decrease), stop and return {Xy, ..., X,} as solution; otherwise,
update L* « L, {Xq, ..., Xp} < {X;, ..., X,}, go to Step 2.
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Demonstration

Where to place the four depots?

Demo (n=10, p=4)

Demo (n=30, p=4)

Paper: Y. Liu (2023). An elliptical cover problem in
drone delivery network design and its solution
algorithms, European Journal of Operational Research,
vol 304, issue 3, 2023.

Code: GitHub - profyliu/elliptical cover

Cover 100 points Cover the whole area



file:///C:/Users/yliu/OneDrive - Wayne State University/WSU/Conferences/2024 OSU trip/ellipses_demo_n10_p4_s20.pdf
file:///C:/Users/yliu/OneDrive - Wayne State University/WSU/Conferences/2024 OSU trip/ellipses_demo_n30_p4_s30.pdf
https://github.com/profyliu/elliptical_cover
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Application in planning for Low-altitude Economy in Shenzhen, China

J. Zhao, B. Xie and L. Yu. (2024). An ellipse-based locating method for flexible deployment of emergency UAVs,
Socio-Economic Planning Sciences.



How to route the air fleet?

When there are other, non-cooperative UAVs traversing the same airspace




FCS

1lg

USS 1's view USS 2's view
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Decision Variables:

Agent's Semi-Cooperative Path Planning Model

Ui ¢ location of vehicle i at time t

V; velocity vector of vehicle i

Wit loss of separation between vehicles i and j at time t

Parameters:

V; maximum speed of vehicle i

D; destination coordinate of vehicle i

Ss ¢ intra-fleet separation between i,j € 0

Si j inter-fleet separation betweeni € 0O and j € E

a;, B priorities of vehicle i and a penalty factor

U; ¢ expected location of external vehicle i at time t

Minimize Diico % ° (ZtET”ui,t - Di”) +6- ZiEO,jEE(ZtET Wiz,j,t)

SUbjeCt 1o Uit = Ujt-—1 S5 Vivi, VieO,teT
lvill < 1, VieEO,teT
luie — il = Si ), Vi,j €O, t,t' €T
e — Qjel| +wije = S) ViEO,jEELET
wije =0, ViEO,jEELET

Separation and deadlock
resolution can be achieved
via setting / adjusting the
parameters




Simulation

Time: 244 Speed: 0.0307 Heading: 0.823% Flow: 0.02¢8

3 vehicles 1 agent

20 vehicles 1 agent

,

b ’o“'" e

Wacipty
N e

20 vehicles 20 agents

30 vehicles 2 agents

Y. Liu (2021). A Multi-agent Semi-cooperative Unmanned Air Traffic Management Model with Separation Assurance, EURQO Journal on
Transportation and Logistics, vol 10, 2021.

Y. Liu (2019). A Progressive Motion Planning Algorithm and Traffic Flow Analysis for High-Density 2D Traffic, 7ransportation Science,
vol 53, no 6, 2019.
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https://waynestateprod-my.sharepoint.com/personal/gn0061_wayne_edu/Documents/WSU/Conferences/2024 OSU trip/3v1a.pdf
https://waynestateprod-my.sharepoint.com/personal/gn0061_wayne_edu/Documents/WSU/Conferences/2024 OSU trip/a_circular_20.pdf
https://waynestateprod-my.sharepoint.com/personal/gn0061_wayne_edu/Documents/WSU/Conferences/2024 OSU trip/a_circular_20_a20.pdf
https://waynestateprod-my.sharepoint.com/personal/gn0061_wayne_edu/Documents/WSU/Conferences/2024 OSU trip/a_30v_2a.pdf
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73x59 Search area with 20 UAVs
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Search an area with n UAVs
iIn minimal time under windy
conditions

Sina demonstrating the work to visitors
from Wuhan Univ. of Technology

S. Kazemdehbashi and Y. Liu (2024). An algorithm with exact bounds for coverage path planning in UAV-based
search and rescue under windy conditions, Computers and Operations Research, Volume 173.



The Drones
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Component wiring of the quadcopter platform used in this research

Telemetry radio n_

On-board computer

LTE dongle

] ===t Y Power module
Controller

D T
55

HIGH DISCHARGE LEPD BATEERY ;gétlul-“" ;”. Hall sensor
ESC modules
PDB Motors & propellers

LiPo battery




Simulated drones running with
ArduPilot SITL (Software in the Loop)

| . . .
Quadcopter with ArduPilot autopilot system
24
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Multiple command and control data links

/ Receiver .Y
Transmitter

Telemetry radio

Ground station
Telemetry radio

|  4—» / Firebase <—» I

LTE dongle Cloud database
Central control system
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A system architecture for drone delivery services

IEdl

Autonomous
Vehicles

Parallel

Cenftral
Control System

Optimization
Suite

DATAi [ CMD

ab

« Trajectory planning

» Dynamic vehicle
routing

'+ Fleet failsafe/zoning'

Cloud
Database

* Map & Location
~+ Status display ]
-+ CMD override

Y. Liu (2019). An Optimization-driven Dynamic Vehicle Routing Algorithm
for On-demand Meal Delivery Using Drones, Computers and Operations
Research, vol 111, 2019

/. Zhou and Y. Liu (2022). A scalable cloud-based UAV fleet management
system, Proceedings of FAIM 2022
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Components can wear and tear after a flight
mission

Preflight check is essential to ensure safety

|s the drone overloaded with heavy payload?

2. |s the center of gravity aligned with the geometric
center of the air frame?

3. Are all motors able to spin as directed by the flight
controller?

4. Are all propellers intact and able to generate the
expected thrust?

5. Does the flight compass need re-calibration?

Can we perform these checks remotely?



Construction of the landing platform for proof of concept

e

B @ EavY
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Measurement Procedure

Land still, read load cell measurements w;, j = 1, ..., 4.
Calculate:

1. Total weight W = ¥ ; w;

2. Center of gravity (projected on the platform plane)

Run a propeller motor, to create a new force F acting on the
rigid body at the propeller center (x, y).

The change in weight will be sensed by the load cells,
recorded as Aw;, j =1, ..., 4.

Calculate F and (x, y) by equilibrium condition:

1 1 .
2. (x,y) = (;Zj Aw;x? > ijyjs), where (x7,y;) is the
location coordinate of load cell j.

I F is smaller than the expected thrust, the propeller or
motor is damaged.



Inference by nonlinear regression

Record many samples of the force locations (x, y) for each propeller pair.
(Xisk Yisk) IS the s-th sample for propeller k in the i-th pair, k € {4, B}, define sgnA :=1, sgnB = —1
L;, a; are the arm length and angle of propeller pair i, which are known by the airframe design

Infer the geometric center (%, ) and airframe orientation 6 by solving the nonlinear least squares:
Minimizeg 5 _r<p<r 7 7 7 ((9? + sgn(k) L; cos(a; + 6) — xi’s’k)z + (ﬁ + sgn(k) L; sin(a; + 0) — yi,slk)z)

I s k

40
30
20

10
% ® Estimated

* Sample

w40 30 20 10 0 10 20 30 a0 * Actual
Reference
10 s

-20

-30

-40

31 Z.Zhou and Y. Liu* (2021). A smart landing platform with data-driven analytic procedures for UAV preflight safety diagnosis, IEEE Access
US. Patent 63/249,752 (pending)
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Where should a drone land In
emergency?




Effective Coverage

Parking spaces are ubiquitous in cities

60%
50% +
40% +
30% +

20% +

P e

10%

0%

O Streets

@ Sidewalks

O Parking/ Driveways
O Roofs

B Lawns/Landscaping

Low Density High Density Multifamily Commercial
Residential Residential

Surface Coverage (Arnold and Gibbons, 1996)

Surface parking landcover processed from
multispectral imagery in Seattle (Eric
Scharnhorst, 2018)
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Train & validate an Al agent
In a simulated environment

Deploy & test in a real drone
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The agent’s model

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

|
|

Parameter @

4 2 1

36864 @ _____

i Size  Value range i O

| . el @ 519 512 1
. Body Tilt 1 [0, 2] |

' Altitude 1 [1.5, 12] I e

Velocity[x .2l 3 [, 4wl 5 O 37120

| | 256

| 256

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

State: s;

Action a; ~ Normal(u, o)

Policy m(a|s¢; 0)
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Advantage Actor-Critic (A2C) model

Actor’s network learns
the policy m(as|ss; 8), the
probability distribution of
a; conditioning on s;

Critic’'s network learns
the value V(s¢; 0), the
expected return starting
from s;

Return R;:= 1, + y1epq + Y214, + -, the total discounted reward
starting from time step t

Value V (s¢; 8): the expected return starting from state s;, by following
a policy parameterized by 6

The critic's network predicts the value of V(s,; 8), denoted as V(s;; 0)
Ri=r+yreps + -+ yT trr_qy +yT V(sr; 8) is the return obtained
by taking actions (a;, a¢yq, -, Arer—1) 1N the next T — 1 steps, then

trusting the critic’s predicted value for future steps.

A, == R, — V(s;; 0) is the Advantage of taking actions over trusting the
critic's prediction all along



Loss function in model training

Actor’s goal:

To increase the probability of choosing a; when A; > 0, and vice versa.
Policy Gradient (PG) method [1]:
Maximizeg logm(a;|ss; 6) - Ag

Proximal Policy Optimization (PPO) method [2]:

Maximizeg CLIP(¢:(60), 1 —€, 1 +€) - A, where ¢.(0) = m(aelse;0)

m(ae|St;001d)

Critic’s goal:

To Increase prediction accuracy,

Minimizeg (V(s4;0) — V(sg; 0o14) — Ap)?

[1] Mnih et al. (2016) Asynchronous Methods for Deep Reinforcement Learning
38 [2] Shulman et al. (2017) Proximal Policy Optimization Algorithms
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Loss function in model training

To ensure sufficient exploration, the action distribution should not converge too
quickly to a (suboptimal) deterministic policy.

Two measures were taken: /

1. Use ‘softplus’ activation function y = In(1 + e*) on the model output logstd (i.e.,
log g), so o Is always above 1.

2. Add a term to maximize the entropy [3] of the action distribution in the loss
function, which exerts an upward push to o.

To bound the magnitude of u (the mean of action), minimize
b_loss: = [(u—1.1)*]? + [(u + 1.1)7]?

[3] Williams and Peng (1991), Function optimization using connectionist reinforcement learning algorithms.
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Model training

The overall loss function used in PPO:

Loss = —CLIP(¢:(8), 1 —€, 1+ €) A +(V(s; 0) — V(sg; 0p1q) — Ap)? — 0.01 - entropy
+ 0.0001 - b_loss

In each training epoch:

Foractor=1, ..., Ndo

Run policy my 4 In environment for T timesteps

Compute advantages A4y, ..., A¢yr

Minimize Loss wrt 8, for K mini-epochs with minibatch size M

Oolq < 0
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NVIDIA Omniverse and Isaac Sim

LAUNCH _:“ SYSTEM REQUIREMENTS RELEASE NOTES

2023.1.0-hotfix.1 DOCUMENTATION TUTORIALS FORUMS

About Isaac Sim

NVIDIA Isaac Sim is a scalable robotics simulation application and synthetic data generation tool,
built on the NVIDIA Omniverse™ platform. It leverages Omniverse Kit powerful simulation

f ISAAC SIM

NVIDIA
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Isaac Gym

GPU-accelerated vectorized RL training environments featuring physics-based simulation,
photo-realistic rendering, domain randomization and sim-to-real support (e.g., via ROS).

Relevant programs in [saac Gym, such as the
Quadcopter and Crazyflie tasks, have some limitations:

1. Actions to be learned are low-level control targets,
such as forces and thrusts with high-frequency
updates, I.e., dt = 0.01 s

Observations are uni-modal, i.e., IMU inputs

Not suited for complex task configurations, €.g.,
hierarchical decisions, task switching, etc.



https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs
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The Drone

A digital model of the 3DR’s Iris quadrotor, with a downward-
facing camera on a stabilized gimbal.




The flight controller

< NS

\
5

4L =

> s
3

-

The RL model decides where
to go, i.e., target coordinate [X,
y, zl in body frame, for the next
few physical steps.

The physical execution, I.e.,
the thrusts and torque
generated by the propellers,
is handled by the FC.

| Implemented a tensorized version of the nonlinear controller presented in Daniel Mellinger and Vijay Kumar, Minimum snap
trajectory generation and control for quadrotors, 2011, so that many drones can be controlled in parallel efficiently via GPU.

44
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The landing scene

=72 tA

Target: six available
parking spaces

Obstacles: a cone
and a rolling ball

a ©
&
€

=
3



Reward Function

DNT = Horizontal Distance to Nearest Target
DNO = Horizontal Distance to Nearest Obstacle

Reward r; = Target + Up + Altitude — 3 + Done*(OnTarget — Obstacle)

Target =1 /(1 + DNT)

Up=1/(1+ 10*Tilt) Obstacl
Altitude = 1 /(1 + |BodyPosZ — 1.5|)

Done = 300 if BodyPosZ < 1.5; 0 otherwise

OnTarget = -4*DNTA2 + 1 1f DNT < 0.5; 0 otherwise

Obstacle = exp(-2*DNO)

Target

An episode ends if Tilt > 0.5 or BodyPosZ < 1.5 or BodyPosZ > 30 or Step Count > 400
46
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Simpler scene test result

Single target, no obstacle

The trained model works
well.




Multiple targets, multiple obstacles

a_loss

tag: losses/a_loss

-0.04

-0.06

-0.08

-0.1

-0.12

“ Se= o
‘za?

0

100k 200k 300k 400k 500k 600k

100
90

0

bounds_loss c_loss
tag: losses/bounds_loss tag: losses/c_loss
1.4
2 12
22 1
18 08
14 0.6
10 0.4
6 0.2
0 100k 200k 300k 400k 500k 600k 0 100k 200k 300k 400k 500k 600k

80
70
60
50
40
30
10 —- —

[-55, 11]

Reward distribution in test scenarios

(11,77)  (77,143] (143,209] (209, 275] (275, 341]

entropy
tag: losses/entropy

6.6
6.2
5.8
5.4

5
4.6

0 100k 200k 300k 400k 500k 600k

In training: N=16, T=64, M=256, K=8. Adam Optimizer with adaptive learning rate starting at
0.001 was used.

48

Trained for 576 epochs, ~4.5 hr
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Future Work

* Nonlinear optimization algorithms
« Sim-to-Real transfer of Al models

» Search and rescue, public safety,
agriculture applications



Yanchao Liu

yanchaoliu@wayne.edu

Thank
you
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