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Problem
Publish the locations of n individuals in a private way.

Examples

▸ Mobile phone location

▸ IP address location

▸ Covid patient location



Problem
Publish the locations of n individuals in a private way.

● Add noise to the locations.

● More noise Ô⇒ More privacy, less accuracy.

● Find the optimal trade off.



Definition of differential privacy

True client’s data

x1, . . . , xn
M

ÐÐÐÐ→
Sold to third parties

Output data

Definition
M is ϵ-differentially private ifM is a randomized algorithm s.t.

e−ϵ ≤ P(M(x1, . . . , x̃i , . . . , xn) ∈ S)
P(M(x1, . . . , xn) ∈ S)

≤ eϵ ∀i ∀x̃i ∀S .



Wasserstein distance

W ({xi}1≤i≤n,{yi}1≤i≤n) = inf
σ

1

n

n

∑
i=1
∥xi − yσ(i)∥.

Can also define W ({xi}1≤i≤m,{yi}1≤i≤n) and
W (µ1, µ2) for probability measures µ1, µ2 on Rd .
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Problem
Publish the location of n individuals in a private way.

● Add noise to the locations.

● More noise Ô⇒ More privacy, less accuracy.

● Find the optimal trade off.

More precisely, design the noise such that

(1) it’s ϵ-differentially private

(2) the error in the Wasserstein distance is minimized



One-dimensional locations

All locations in [0,1].

If µ1 and µ2 are probability measures on [0,1], then

W (µ1, µ2) = ∫
1

0
∣µ1([0, t]) − µ2([0, t])∣dt.



One-dimensional locations

Problem
Design the noise such that

(1) it’s ϵ-differentially private

(2) the error in the Wasserstein distance is minimized

This is equivalent to

Problem
Design the probability density f (z) = 1

β e
V (z) on Rn such that

(1) ∣V (x) −V (y)∣ ≤ ∥x − y∥1 ∀x , y ∈ Rn

(2) if (Z1, . . . ,Zn) ∼ f , then

1

n

n

∑
k=1

E∣Z1 + . . . + Zk ∣ is minimized.

Note: Add noise to the weights, not to the location.



One-dimensional locations

Problem
Design the probability density f (z) = 1

β e
V (z) on Rn such that

(1) ∣V (x) −V (y)∣ ≤ ∥x − y∥1 ∀x , y ∈ Rn

(2) if (Z1, . . . ,Zn) ∼ f , then

1

n

n

∑
k=1

E∣Z1 + . . . + Zk ∣ is minimized.

If V (z) = −∥z∥1, then Z1, . . . ,Zn are i.i.d.,
(1) is satisfied ✓
(2):

c
√
n ≤ 1

n

n

∑
k=1

E∣Z1 + . . . + Zk ∣ ≤ C
√
n.

This is the classical random walk.



One-dimensional locations

Problem
Design the probability density f (z) = 1

β e
V (z) on Rn such that

(1) ∣V (x) −V (y)∣ ≤ ∥x − y∥1 ∀x , y ∈ Rn

(2) if (Z1, . . . ,Zn) ∼ f , then

1

n

n

∑
k=1

E∣Z1 + . . . + Zk ∣ is minimized.

If V (z) = −∥z∥1, then Z1, . . . ,Zn are i.i.d.,
(1) is satisfied ✓
(2):

c
√
n ≤ 1

n

n

∑
k=1

E∣Z1 + . . . + Zk ∣ ≤ C
√
n.

This is the classical random walk.

Question: Can we do better than
√
n ?



One-dimensional locations

Problem
Design the probability density f (z) = 1

β e
V (z) on Rn such that

(1) ∣V (x) −V (y)∣ ≤ ∥x − y∥1 ∀x , y ∈ Rn

(2) if (Z1, . . . ,Zn) ∼ f , then

1

n

n

∑
k=1

E∣Z1 + . . . + Zk ∣ is minimized.

▸ Need mean reversion

▸ Tried stochastic differential equation

▸ But Brownian motion is not suitable, because it’s ℓ1 norm.



Haar basis

These functions serve as mean reversion functions.

k ↦ ψj(1) + . . . + ψj(k)

has a bump and then returns to 0.



One-dimensional locations

Problem
Design the probability density f (z) = 1

β e
V (z) on Rn such that

(1) ∣V (x) −V (y)∣ ≤ ∥x − y∥1 ∀x , y ∈ Rn

(2) if (Z1, . . . ,Zn) ∼ f , then

1

n

n

∑
k=1

E∣Z1 + . . . + Zk ∣ is minimized.

Take

Zk =
n

∑
j=1

Λjψj(k) for k = 1, . . . ,n,

where Λ1, . . . ,Λn are i.i.d. Laplace random variables, i.e., 1
2be
− ∣x ∣

b .



One-dimensional locations

Problem
Design the probability density f (z) = 1

β e
V (z) on Rn such that

(1) ∣V (x) −V (y)∣ ≤ ∥x − y∥1 ∀x , y ∈ Rn

(2) if (Z1, . . . ,Zn) ∼ f , then

1

n

n

∑
k=1

E∣Z1 + . . . + Zk ∣ is minimized.

Take

Zk =
n

∑
j=1

Λjψj(k) for k = 1, . . . ,n,

where Λ1, . . . ,Λn are i.i.d. Laplace random variables, i.e., 1
2be
− ∣x ∣

b .

(1) is satisfied ✓
(2):

max
1≤k≤n

E∣Z1 + . . . + Zk ∣ ≤ C log
3
2 n.



Random walk

Classical random walk:



Random walk
Classical random walk:

Super-regular random walk:



Main theorem (One-dimension)

Theorem (B., Strohmer, Vershynin,
Probability Theory & Related Fields 2024)

There is an ϵ-differentially private algorithm for locations in [0,1]
such that the expected error in the Wasserstein distance is at most

C log
3
2 ϵn

ϵn
,

where n is the number of individuals.

Lower bound: For ϵ-DP algorithms, it’s impossible to do better
than O( 1n).



Main theorem (Higher-dimension)

Theorem
There is an ϵ-differentially private algorithm for locations in [0,1]d
such that the expected error in the Wasserstein distance is at most

⎛
⎝
C log

3
2 ϵn

ϵn

⎞
⎠

1
d

,

where n is the number of individuals.

Lower bound: For ϵ-DP algorithms, it’s impossible to do better
than O(n−1/d).



Proof of main theorem (Higher dimension)

Use a space-filling curve and apply the main result in 1D.

Source: Wiki



n = 10,000
x1, . . . , xn: Points on the blue line
Private measure ν: Uniformly distributed on the orange points

Note: The 2 clusters are preserved.



Wasserstein distance
If W (µ1, µ2) is small, then

(1) All Lipschitz queries are uniformly preserved:

W (µ1, µ2) = sup
f
∣∫ f dµ1 − ∫ f dµ2∣ ,

where the sup is over all 1-Lipschitz f .

Often times algorithms generating synthetic data require users
to specify the queries f .

(2) Clusters are preserved (even non-convex clusters), since
for any set S ,

fS(y) = dist(y ,S) = inf
x∈S
∥y − x∥

is a 1-Lipschitz function.



Prior result

Theorem (Wang et al 2016 JMLR)

There is an ϵ-differentially private algorithm for locations in [0,1]d
such that the expected error

sup
f
∣∫ f dµ1 − ∫ f dµ2∣ ,

where the sup is over all K -smooth f , is at most

C

ϵ
n−

K
2d+K .

Our result: K = 1 with error O(n−1/d ⋅ polylog(n)).
Optimal up to the polylog factor.
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